Convert from W

Enter a value for the units below and press calculate.

Convert from
W with Z = Ω  
 
\( 10 \cdot log_{10}(W) + 10 \cdot log_{10}(Z) + 120= \)
dBμV
\( 10 \cdot log_{10}(W) + 10 \cdot log_{10}(Z) + 60 = \)
dBmV
\( 10 \cdot log_{10}(W) + 10 \cdot log_{10}(Z) = \)
dBV
\( 10 \cdot log_{10}(W) - 10 \cdot log_{10}(Z) + 120 = \)
dBμA
\( 10 \cdot log_{10}(W) - 10 \cdot log_{10}(Z) + 60 = \)
dBmA
\( 10 \cdot log_{10}(W) - 10 \cdot log_{10}(Z) = \)
dBA
\( 10 \cdot log_{10}(W) + 120 = \)
dBpW
\( 10 \cdot log_{10}(W) + 30 = \)
dBm
\( 10 \cdot log_{10}(W) = \)
dBW
 
\( \sqrt{W \cdot Z } \cdot 10^6 = \)
μV
\( \sqrt{W \cdot Z } \cdot 10^3 = \)
mV
\( \sqrt{W \cdot Z } = \)
V
\( \sqrt{ \frac{ W }{ Z } } \cdot 10^6 = \)
μA
\( \sqrt{ \frac{ W }{ Z } } \cdot 10^3 = \)
mA
\( \sqrt{ \frac{ W }{ Z } } = \)
A
\( W \cdot 10^{12} = \)
pW
\( W \cdot 10^3 = \)
mW