Convert from dBm

Enter a value for the units below and press calculate.

Convert from
dBm with Z = Ω  
 
\( dBm + 10 \cdot log_{10}(Z) + 90 =\)
dBμV
\( dBm + 10 \cdot log_{10}(Z) + 30 =\)
dBmV
\( dBm + 10 \cdot log_{10}(Z) =\)
dBV
\( dBm - 10 \cdot log_{10}(Z) + 90 =\)
dBμA
\( dBm - 10 \cdot log_{10}(Z) + 30 =\)
dBmA
\( dBm - 10 \cdot log_{10}(Z) =\)
dBA
\( dBm + 90 = \)
dBpW
\( dBm - 30 = \)
dBW
 
\( \sqrt{10^{dBm/10} \cdot Z \cdot 10^{-3} } \cdot 10^6 = \)
μV
\( \sqrt{10^{dBm/10} \cdot Z \cdot 10^{-3} } \cdot 10^3 = \)
mV
\( \sqrt{10^{dBm/10} \cdot Z \cdot 10^{-3} } = \)
V
\( \sqrt{ \frac{10^{dBm/10}} {Z} \cdot 10^{-3} } \cdot 10^6 = \)
μA
\( \sqrt{ \frac{10^{dBm/10}} {Z} \cdot 10^{-3} } \cdot 10^3 = \)
mA
\( \sqrt{ \frac{10^{dBm/10}} {Z} \cdot 10^{-3} } = \)
A
\( 10^{(dBm+90)/10} = \)
pW
\( 10^{dBm/10} = \)
mW
\( 10^{(dBm-30)/10} = \)
W