Convert from mV

Enter a value for the units below and press calculate.

Convert from
mV with Z = Ω  
 
\( 20 \cdot log_{10}(mV) + 60 =\)
dBμV
\( 20 \cdot log_{10}(mV) =\)
dBmV
\( 20 \cdot log_{10}(mV) - 60 = \)
dBV
\( 20 \cdot log_{10}(mV) - 20 \cdot log_{10}(Z) + 60 = \)
dBμA
\( 20 \cdot log_{10}(mV) - 20 \cdot log_{10}(Z) = \)
dBmA
\( 20 \cdot log_{10}(mV) - 20 \cdot log_{10}(Z) - 60 = \)
dBA
\( 20 \cdot log_{10}(mV) - 10 \cdot log_{10}(Z) + 60 = \)
dBpW
\( 20 \cdot log_{10}(mV) - 10 \cdot log_{10}(Z) - 30 = \)
dBm
\( 20 \cdot log_{10}(mV) - 10 \cdot log_{10}(Z) - 60 = \)
dBW
 
\( mV \cdot 10^3 = \)
μV
\( mV \cdot 10^{-3} = \)
V
\( \frac{ mV }{ Z } \cdot 10^3 = \)
μA
\( \frac{ mV }{ Z } = \)
mA
\( \frac{ mV }{ Z } \cdot 10^{-3}= \)
A
\( \frac{ mV^2 }{ Z } \cdot 10^6= \)
pW
\( \frac{ mV^2 }{ Z } \cdot 10^{-3}= \)
mW
\( \frac{ mV^2 }{ Z } \cdot 10^{-6}= \)
W